代写辅导接单-MTH 451 Quiz 1

欢迎使用51辅导,51作业君孵化低价透明的学长辅导平台,服务保持优质,平均费用压低50%以上! 51fudao.top

MTH 451 Quiz 1

1. Write the Taylor series for f (x + h), center at x, up to and including h4 term. Answer:

f (x + h) = f (x) + f ′ (x)h + f ′′ (x) h2 + f ′′′ (x) h3 + f iv (x) h4 + · · · 2 6 24

2. Write the Taylor series for f (x − h), center at x, up to and including h4 term. Answer:

f (x − h) = f (x) − f ′ (x)h + f ′′ (x) h2 − f ′′′ (x) h3 + f iv (x) h4 + · · · 2 6 24

Name:

     3. Add the above series and solve for f′′(x). Answer:

f (x + h) + f (x − h) = 2f (x) + f ′′ (x) h2 + f iv (x) h4 + · · ·

12

f ′′ (x) = f (x + h) + f (x − h) − 2f (x) − f iv (x) h2 + · · ·

 h2 12

4. Write the Taylor series for f (x + 2h), center at x, up to and including h4 term. Answer:

f (x + 2h) = f (x) + 2f ′ (x)h + 2f ′′ (x) h2 + 4f ′′′ (x) h3 + 2f iv (x) h4 + · · · 33

5. Make a linear combination of series 1 and series 4 to eliminate f′(x). Solve for f′′(x). Answer: Multiplying 1 by -2 and adding it to 4 gives

f (x + 2h) − 2f (x + h) = −f (x) + f ′′ (x) h2 + f ′′′ (x) h3 + 7f iv (x) h4 + · · · 12

f ′′ (x) = f (x + 2h) + f (x) − 2f (x + h) − f ′′′ (x)h − 7f iv (x) h2 + · · · h2 12

 

 The error term in Simpson’s rule can be established by using the Taylor series from §1.2:

f(a+h)=f +hf′ + 1h2f′′ + 1h3f′′′ + 1h4f(4) +··· 2! 3! 4!

where the functions f , f ′, f ′′, . . . on the righthand side are evaluated at a.

Now replacing h by 2h, we have

′ 2 ′′ 4 3 ′′′ 24 4 (4)

f(a+2h)=f+2hf +2hf +3hf +4!hf +···

   Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing     §5.3 15 / 51

 

 Using these two series, we obtain

f (a)+4f (a+h)+f (a+2h) = 6f +6hf ′+4h2f ′′+2h3f ′′′+20h4f (4)+··· 4!

Thereby, we have

h3[f (a) + 4f (a + h) + f (a + 2h)] = 2hf + 2h2f ′ + 34h3f ′′

+2h4f′′′+ 20 h5f(4)+···

 3 3·4!

Hence, we have a series for the righthand side of (1). Now let’s find one for the left-hand side.

The Taylor series for F (a + 2h) is

(4)

F(a + 2h) = F(a) + 2hF′(a) + 2h2F′′(a) + 43h3F′′′(a) 2 4 (4) 25 5 (5)

+3hF (a)+5!hF (a)+··· Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing     §5.3

16 / 51

 

 Let

Zx

F (x ) =

By the Fundamental Theorem of Calculus, F ′ = f .

We observe that F(a) = 0 and F(a + 2h) is the integral on the left-hand side of (1).

SinceF′′ =f′,F′′′ =f′′,andsoon,wehave

Z a+2h 4 2 25

f(x)dx =2hf+2h2f′+3h3f′′+3h4f′′′+5·4!h5f(4)+··· (5) Subtracting (2) from (3), we obtain

Za+2h h h5 (4)

a

f (t ) dt

a

a

f(x)dx = 3[f(a)+4f(a+h)+f(a+2h)]− 90f −···

     Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing §5.3 17 / 51

 

 Summary §3.1

For finding a zero r of a given continuous function f in an interval

[a, b], n steps of the bisection method produce a sequence of intervals [a, b] = [a0, b0], [a1, b1], [a2, b2], . . . , [an, bn] each containing the desired root of the function.

The midpoints of these intervals c0, c1, c2, . . . , cn form a sequence of approximations to the root, namely, ci = 21 (ai + bi ).

On each interval [ai , bi ], the error ei = r − ci obeys the inequality | e i | ≤ 21 ( b i − a i )

and after n steps we have

|en|≤ 1 (b0−a0)

2n+1

Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing     §3.1

44 / 45

 

 Summary §3.2

For finding a zero of a continuous and differentiable function f ,

Newton’s method is given by

xn+1 = xn − f (xn) (n ≥ 0)

f′(xn)

It requires a given initial value x0 and two function evaluations (for f

and f ′) per step.

The errors are related by

en+1 = −1?f ′′(ξn)?en2 2 f′(xn)

    Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing     §3.2 48 / 51

 

 Summary §3.3

The secant method for finding a zero r of a function f (x) is written

as

xn+1 =xn −? xn −xn−1 ?f(xn) f (xn) − f (xn−1)

for n ≥ 1, which requires two initial values x0 and x1.

After the first step, only one new function evaluation per step is needed.

After n + 1 steps of the secant method, the error iterates ei = r − xi obey the equation

en+1 = −1?f ′′(ξn)?enen−1 2 f′(ζn)

which leads to the approximation

|en+1| ≈ C|en|(1+ 5 )/2 ≈ C|en|1.62

Therefore, the secant method has super-linear convergence

behavior.

    Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing     §3.3

37 / 37

 

 Summary §4.1

The Lagrange form of the interpolation polynomial is

n

pn (x ) = X li (x )f (xi )

i=0

with cardinal polynomials

li (x ) = Yn ? x − xj ?

j̸=i xi −xj

j=0

that obey the Kronecker delta equation

(0 ≤ i ≤ n)

li(xj)=δij =

(0 ifi̸=j

1 ifi=j

     Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing §4.1 108 / 112

 

 The Newton form of the interpolation polynomial is

n i−1

pn (x ) = X ai Y(x − xj )

i=0 j=0

with divided differences

ai =f[x0,x1,...,xi]= f[x1,x2,...,xi]−f[x0,x1,...,xi−1]

xi −x0

These are two different forms of the unique polynomial p of degree n that interpolates a table of n + 1 pairs of points (xi , f (xi )) for

0 ≤ i ≤ n.

    Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing     §4.1 109 / 112

 

MTH 451 Quiz/Homework 3

x 0 1 2 -1 y 3 2 -3 6

Find the interpolating polynomial for the above table in 1. Lagrage form Answer:

p(x) = 3 (x − 1)(x − 2)(x + 1)+2 x(x − 2)(x + 1)−3 x(x − 1)(x + 1)+6 x(x − 1)(x − 2)

Name:

    (−1)(−2)1 1(−1)2 2(1)3

2. Newton form Answer: Divided differences:

(−1)(−2)(−3)

x f[] 03

12

2-3 -1 6

f[,] f[,,] f[,,,] -1

The top entries give p(x) = 3 − 1x − 2x(x − 1) − 1x(x − 1)(x − 2).

-5

-3

-2 -1

-1

 

 The basic trapezoid rule for the subinterval [xi , xi+1] is

Z xi+1

xi

where the error is

1

f(x)dx ≈Ai = 2(xi+1 −xi)[f(xi)+f(xi+1)]

− 1 (xi+1 − xi)3f ′′(ξi) 12

      Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing §5.1 55 / 61

 

 The composite trapezoid rule is

Z b n−1 f(x)dx ≈T(f;P)=XAi =

1 n−1

X(xi+1 −xi)[f(xi)+f(xi+1)]

a

where the error is

i=0

2 i=0

1 Xn

−12

Numerical Mathematics & Computing

i=1

(xi+1 −xi)2f′′(ξi)

      Cheney & Kincaid (Cengage⃝c )

§5.1 56 / 61

 

 For uniform spacing of nodes in the interval [a, b], we let xi = a + ih, where

h=(b−a)/n (0≤i ≤n)

The composite trapezoid rule with uniform spacing is

Zb h n−1 f(x)dx ≈T(f;P)= 2[f(x0)+f(xn)]+hXf(xi)

a i=1 where the error is

− 1 (b − a)h2f ′′(ζ) 12

      Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing

§5.1 57 / 61

 

 For uniform spacing of nodes in the interval [a, b] with 2n subintervals, we let h = (b − a)/2n, and we have

 R(0,0)= 12(b−a)[f(a)+f(b)]



 R(n,0)=hXf(a+ih)+h2[f(a)+f(b)]

2n −1 i=1

     Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing §5.1 58 / 61

 

  Euler-Maclaurin Formula and Error Term Theorem 1

If f (2m) exists and is continuous on the interval [a, b], then

h n−1 X[f(xi)+f(xi+1)]+E

    Z b a

f(x)dx = whereh=(b−a)/n,xi =a+ihfor0≤i≤n,and

2 i=0

E = X A2k h2k [f (2k−1)(a) − f (2k−1)(b)] − A2m(b − a)h2mf (2m)(ξ)

for some ξ in the interval (a, b).

m−1 k=1

    Cheney & Kincaid (Cengage⃝c ) Numerical Mathematics & Computing     §5.2

19 / 37

 

 


51作业君

Email:51zuoyejun

@gmail.com

添加客服微信: abby12468